Advocates of green building who have used the LEED certification system during its 15 year evolution are well aware that the time requirements and cost for certification have increased significantly with each new version. LEED versions 2.0 and 2.1, the first fully operational versions, were fairly straightforward and uncomplicated with respect to submission requirements. However, even in the early years of LEED (1998 to 2007) the USGBC set a low bar for customer service which remains the major handicap to LEED certification today. As Randy Udall and Auden Schendler put it in their groundbreaking essay, “LEED is Broken, Let’s Fix It,” published in Grist in 2005, “We’re concerned that LEED has become costly, slow, brutal, confusing, and unwieldy, a death march for applicants administered by a soviet-style bureaucracy that makes green building more difficult than it needs to be, yet has everyone genuflecting at the door to prove their credentials.”

One of the major problems with LEED articulated by Udall and Schendler was the crippling bureaucracy that caused huge delays in certification that extended well beyond substantial completion and after the project team had dispersed. And mind you their article was written back in the early days of LEED 2.2 when there was not yet a great explosion in buildings being registered for certification. LEED version 3, activated in 2009 brought more bureaucracy, longer delays, additional costs, and even slower response times. Documentation continues to be laborious and time consuming, customer service has not improved, and LEED Online, the internet portal for LEED project certification continues to make life for project teams more difficult with each new version. Even more daunting is the latest iteration, LEED version 4, which represents a seismic shift in the structure and requirements for this green building certification system.

THE GREEN GLOBES EXPERIENCE

Green building certification is clearly important in its own right, and especially because major building buyers, such as the US Federal Government, are committed to green buildings, often by regulation and policy. But is there an alternative to LEED that makes the process more timely and affordable, and perhaps a lot less painful? The answer is yes, there is an alternative accepted by the Federal Government and many state and local governments. It has the attributes of excellent customer service, rapid decision making and response times, flexibility, and final certification shortly after the project is completed. It is called Green Globes and has its roots in the first and most dominant international green building rating system, BREEAM, the U.K. system which has certified over 200,000 green buildings and through which over 1,000,000 building projects have been registered.

My personal experience with Green Globes began as a consultant to St. Johns River College in Florida in 2008. I was assisting the College and the architect with the green design of an academic building in St Augustine. When it was time to orient the owner and project team to LEED certification, they asked me if there was an alternative to LEED. They expressed concern about the time and cost of LEED certification and were hopeful that they could meet the State’s requirement for a certified green building by some other route. Much to my surprise, when I
presented the alternatives, they opted for Green Globes which Florida recognizes as acceptable for green building certification.

When using Green Globes I was pleasantly surprised by the ease of use of the online project assessment tools and also by the system's flexibility, adaptability and transparency. One immediate surprise was that credits could be considered 'Not Applicable,' a feature absent in LEED. An additional pleasant surprise was the excellent customer service provided by the Green Building Initiative in Portland, Oregon, the proponent of Green Globes. Importantly, each project was assigned a third-party Assessor whose primary duty was to perform an on-site final evaluation of the project and award it one to four Green Globes based on the points earned in the certification process. The Assessor is also the person to whom questions regarding greening strategies, grey areas, and other questions can be posed and resolved in the flow of the design and construction processes. Unlike LEED where a technical inquiry costs $330 and takes 4 weeks for a response, the Assessor provides the answers quickly and at no cost.

I became a third-party Green Globes Assessor and soon discovered that the project teams with whom I worked were focused much less on chasing points and more on achieving sustainability goals. This was largely a result of the structure of Green Globes which addresses a host of issues not covered by LEED. The certification process was efficient, fair, and affordable. The transition from LEED to Green Globes was easy and problem-free for the project team and there was a clear sense of excitement about not having to keep the team buried in a LEED reference manual, but instead, being able to unleash the creative energy of a talented and thoughtful group of professionals.

INNOVATIVE FEATURES

Green Globes has a number of innovative features not found in the current version of LEED. Green Globes offers credit to projects for which a life cycle assessment (LCA) of building components is performed, an emerging trend in green building not addressed by LEED. Attention to superior acoustics, addressed only in the Schools version of LEED, can earn points for all Green Globes projects. The major point categories for both systems are roughly the same, although Green Globes has two additional categories: Project Management and Emissions, Effluents, and Other Impacts. In the Project Management category the project can earn points for integrated design, a high priority for any green building project but which is not rewarded by LEED. Both LEED and Green Globes use many of the same standards such as ASHRAE Standards 90.1, 62.1, 55, and 52 for energy, ventilation, thermal comfort, and air filtration respectively. Many of the materials credits for reuse and recycling are similar and the same is generally true for most other categories such as Indoor Environment and Water Quality.

Green Globes has an online self-assessment system that the project team uses during the various project phases. Unlike LEED Online it is easy to use, quick, and highly interactive. The construction phase self-assessment and its accompanying documentation are used by the third-party Assessor as the basis for judging the performance of the project. Green Globes has a basis of 1,000 points compared to the 110 available for LEED projects. Due to the potential for Not Applicable situations, it is not unusual for the base points to be reduced somewhat, thus tailoring the Green Globes tool to be adapted to the actual conditions of the project. One final feature that makes the shift to Green Globes easy is that the project documentation is maintained by the project team, normally electronically and access is provided to the Assessor for their evaluation at
the appropriate time. The type of system used for storing the documentation is flexible and generally the project management software used by the team is used for this purpose.

SUMMARY

In short, the transition to Green Globes for anyone who has used LEED is straightforward and easy. The adaptability of Green Globes to the project conditions and the flexibility of the online system make the change trouble-free and uncomplicated. It has many innovative features such as LCA that are not available in the current edition of LEED. Customer service by the Green Building Initiative is responsive and supportive, reason alone to consider using Green Globes. And finally the availability of the Assessor to answer technical questions and make timely decisions about green strategies and grey areas not only make the change from LEED to Green Globes easy, it makes you wonder why you had not done so sooner!

Author Bio

Charles J. Kibert is a Professor in the M.E. Rinker, Sr. School of Building Construction, College of Design, Construction and Planning, University of Florida. He was the Director of the Center for Construction and Environment from 1991-1999 and of the Rinker School from 1999-2002. He is also a co-founder and chairman of the Cross Creek Initiative, a non-profit industry/university joint venture seeking to implement sustainability principles into construction. His research interests are: construction waste management, environmental impacts of construction, construction and demolition (C&D) debris recycling, and sustainable development and construction. He is the Coordinator of an international working group known as Task Group 16 of Conseil International du Batiment (CIB) on the subject of Sustainable Construction.

Dr. Kibert teaches a newly developed graduate course on Sustainable Construction at the University of Florida as well as continuing education courses to industry on the subject. He has published over 90 papers and books and edited several publications on construction and the environment and related issues. He is a Registered Professional Engineer in Florida, a Chartered Engineer in the U.K., and a mechanical and electrical contractor in Florida.

Dr. Kibert serves as a member of the State of Florida Construction/Demolition (C&D) Debris Task Force, a state legislated group that is recommending appropriate practices and laws that should replace the existing process. He has been involved with several C&D research efforts to include waste characterization and an effort to assess the feasibility of improving the recycling rate of C&D waste in Orange County, Florida. He has taught several continuing education classes on C&D issues at the Southeast Building Congress in Orlando and at the National Association of Home Builders Annual Conference in Houston, Texas. Prior to his current position he was Director of Design and Vice-President of MMM Design Group International in Dublin, Ireland and Frankfurt, Germany. He has also been a mechanical and electrical contractor, a consulting mechanical engineer, a nuclear reactor design engineer, and an Army officer. At present he is a Colonel in the U.S. Army Reserve and a unit commander.